D. K.T. E. Society's

Textile and Engineering Institute, Ichalkaranji (An Autonomous Institute)

Syllabus

for

Second Year B.Tech.

of

Computer Science and Engineering (Artificial Intelligence) (With effect from 2021-22)

DKTES Textile and Engineering Institute, Ichalkaranji

(An Autonomous Institute)

Teaching and evaluation Scheme for year 2021-22

Second Year B. Tech. (Semester - III) In Computer Science and Engineering (Artificial Intelligence)

Sr.	Course	Course Title	Course	r	Teach	ing sc	heme	Course		Evaluation scheme				
No.	Code		Category					Credits	Theory			Prac	tical	
				L	Т	Р	Contact		С	IE	SEE	CIE	SEE	TOTAL
							Hrs/wk		SE-I	SE-II				
1	AIL201	Probability and Statistics	BSC	3	1	-	4	4	25	25	50	-	-	100
2	AIL202	Data Structures	PCC	3		-	3	3	25	25	50	-	-	100
3	AIL203	Digital Systems and Microprocessors	PCC	3	-	I	3	3	25	25	50	-	-	100
4	AIL204	Data Communication and Networking	PCC	3	-	-	3	3	25	25	50	-	-	100
5	AIL205	Theory of Computation	PCC	3	1	-	4	4	25	25	50	-	-	100
6	AIP206	Problem Solving using C	PCC	2	-	4	6	4	-	-	-	50	50	100
7	AIP207	Data Communication and Networking Lab	PCC	-	-	2	2	1	-	-	-	50	50	100
8	AIP208	Digital Systems and Microprocessors Lab	PCC	-	-	2	2	1	-	-	-	50	50	100
9	AIL209-A	Environmental Studies	HSMC	2	-	-	2	-	-	-	-	-	-	-
		Total		19	02	08	29	23	125	125	250	150	150	800

L- Lecture T-Tutorial P-Practical

SE-I: Semester Examination-I SE-II: Semester Examination-II CIE – Continuous in Semester Evaluation SEE- Semester End Examination

Course Category	HSMC (Hum. & Social Sc., Mgt)	BSC (Basic Sc.)	ESC Engg. Sc.)	PCC (Prof. Core Courses)	PEC (Prof. Elect. Courses)	OEC (Open Elct. Courses)	MC (Mandatory	PST (Project / Seminar / Ind.
							Courses)	Training)
Credits		4		19				
Cumulative Sum	3	15	22					

Progressive Total Credits: 40+23 =63

DKTES Textile and Engineering Institute, Ichalkaranji

(An Autonomous Institute)

Teaching and evaluation Scheme for year 2021-22

Second Year B. Tech (Semester – IV) In Computer Science and Engineering (Artificial Intelligence)

Sr.	Course	Course Title	Course	Teaching scheme Course Evaluation scheme										
No.	Code		Category					Credits		Theory			tical	
				L	Т	Р	Contact		С	IE	SEE	CIE	SEE	TOTAL
							Hrs/wk		SE-I	SE-II				
1	AIL210	Advanced Microprocessors and Microcontroller	PCC	3	1	-	4	4	25	25	50	-	-	100
2	AIL211	Introduction to Artificial Intelligence	PCC	3	-	-	3	3	25	25	50	-	-	100
3	AIL212	Advanced Computer Networks	PCC	3	-	-	3	3	25	25	50	-	-	100
4	AIL213	Computer Algorithms	PCC	3	-	-	3	3	25	25	50	-	-	100
5	AIL214	Software Engineering	PCC	3	1		4	4	25	25	50	-	-	100
6	AIP215	Object Oriented Programming using C++	PCC	2	-	4	6	4	-	-	-	50	50	100
7	AIP216	Advanced Computer Networks Lab	PCC	-	-	2	2	1	-	-	-	50	50	100
8	AIP217	Computer Algorithms Lab	PCC	-	-	2	2	1	-	-	-	50	50	100
9	AIL209	Environmental Studies	HSMC	2	-	-	2	-	-	-	70	30	-	GRADE
10	AIL218	Presentation and Technical Report Writing using Latex	HSMC	1	-	-	1	-	-	-	-	-	-	GRADE
		Total		20	02	08	30	23	125	125	320	180	150	800

L- Lecture T-Tutorial P-Practical

SE-I: Semester Examination-I SE-II: Semester Examination-II CIE – Continuous in Semester Evaluation SEE- Semester End Examination

Course	HSMC (Hum. &	BSC (Basic	ESC	PCC (Prof.	PEC (Prof.	OEC (Open	MC	PST (Project /
Category	Social Sc., Mgt)	Sc.)	Engg. Sc.)	Core Courses)	Elect. Courses)	Elct. Courses)	(Mandatory	Seminar / Ind.
							Courses)	Training)
Credits				23				
Cumulative Sum	3	19	22	19				

Progressive Total Credits: 63+23 = 86

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – III) AIL201: Probability and Statistics

Teaching Scheme:	Credits	Evaluation Scheme:
Lectures: 03 Hrs./Week	04	SE-I: 25 Marks
Tutorials: 01Hrs/Week	04	SE-II: 25 Marks
Practicals: 00 Hrs./Week		SEE: 50 Marks

Course Outcomes:

On completion of the course, student will be able to-

- □ Remember the theory of counting, basic concepts of statistics.
- □ Use the knowledge to solve the examples of counting principle, correlation, regression, curve fitting
- Use the knowledge to study the data given w.r.t. dispersion.
- \Box Apply the knowledge to test the correlation, to test hypothesis, to do sample tests.

	Course Contents	
Unit I	Introduction to statistics	06 Hours

Definitions of Population, Variable, Attribute, Census Survey, Sample Survey, Random sample. Raw statistical data, collection, classification, Frequency distribution, class limits & boundary, class width, midpoint. Histogram, Frequency polygon, Frequency curve. Measures of central tendency: Arithmetic Mean (A.M.), Median, Mode, Combined Mean.

Unit II	Measures of dispersion	08 Hours
Range, Qu	rtile deviation, Mean deviation Standard deviation as Absolute measures of	dispersion, Coefficien

of range, quartile deviation, mean deviation, coefficient of variation as Relative measures of dispersion, coefficient of variation as Relative measures of dispersion, consistency of data.

Unit III			Probab	ility				06 H	ours
Counting Pr	inciple, Rule	of Sum &	Product, Ra	andom Ex	periments,	Sample s	pace,	Events,	Concept of
Probability,	Conditional	Probability,	Independer	nt events,	Random	Variables,	Prob	ability	Distribution
Function, Ba	yes' Theorem	l.							

Unit IV	Testing of hypothesis and Large Sample Tests	06 Hours
---------	--	----------

Introduction, Hypothesis, Statistic, Critical Region, Errors in testing, Level of Significance. Test for population mean, equality of population means population proportion & equality of population proportions.

Unit VMathematical Logic08 HoursIntroduction, Statements and notations, Connectives, Statement formulas and truth tables, Well-formed
formulas, Tautologies, Equivalence of formulas, Duality law, Tautological implications, Functionally
complete sets of connectives, Normal Forms, Completely parenthesized infix and polish notations, Theory of
Inference for statement calculus – validity using truth table, rules of inference, consistency of premises and
indirect method of proof.

Unit	VI Combinatorial Analysis	06 Hours				
First o	First counting principle, second counting principle, permutation, combination, Pigeonhole principle.					
Text B	Fext Books:					
1.	Discrete Mathematics and its Applications - Kenneth H. Rosen (AT&T Bell	Labs)				
2.	2. Mathematical Statistics - J.Fruend.					
3.	Applied Statistics & Probability of Engineers - Montgomeri & Runger					
Refere	ences Books:					
1.	Discrete Mathematics - Semyour Lipschutz, MarcLipson (MGH), Schaum's	outlines				
2.	Probability and Statistics- John Schiller, Murray R. Spigel (MGH), Schaum'	s outlines 3. Probability				
	& Statistics for Engineers by Johnson					
Useful	Useful Links:					
1.	https://www.iith.ac.in/~aravind/Files-DM/LLM-MFCS-2004.pdf					

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – III) AIL202: Data Structures **Teaching Scheme: Evaluation Scheme:** Credits Lectures: 03 Hrs./Week CIE: 50 Marks 03 Tutorials: 00 Hrs./Week SEE: 50 Marks

Practicals: 00 Hrs./Week

Course Outcomes:

Unit VI

On completion of the course, student will be able to-

- □ Describe basic terminology of Data Structures.
- Apply data structures to solve given problem.
- Design algorithms to carry out different operations on data structures.
- □ Analyze performance of different data structures

	Course Contents	
Unit I	Linear List	10 Hours

Abstract Data Types – model and implementation, Algorithm efficiency, General List – operations, List ADT, List implementations -Array-Algorithms and analysis. Linked List- Singly Linked List, Doubly Linked List, Circular Linked List.

Unit II	Stacks and Queues	08 Hours
---------	-------------------	----------

Stacks ADT, Stack Implementation using linked list and array, applications of stack. Queues – operations ADT, implementations, applications, Circular queue, Priority queues

Unit III **Sorting and Searching 06 Hours**

Sorting Techniques - Bubble Sort, Insertion Sort, Selection Sort, Quick Sort, Merge Sort, Radix Sort Searching Techniques - Linear and binary search, Hashing - concept, hashing methods, hash collision, hash collision resolution methods.

Unit IV	Trees	06 Hours	
Basic tree concepts, binary tree – properties, implementation, traversal, expression tree, Huffman code binary search tree - concept, implementation, traversal, Search, Insertion, deletion.			
Unit V	Balanced Trees	06 Hours	
AVL Tree operations:	- Concept, balancing tree, insertion, deletion, implementation	on. Heap –concept,	

Definition and storage, traversal – depth first and breadth first algorithm, Shortest path Warshall's and Dijkshtra algorithm, spanning tree algorithms.

Graph

08 Hours

- 1. Data Structures: A Pseudocode Approach with C, Richard F. Gilberg & Behrouz A. Forouzan.
- 2. Data Structures using C ISRD Group, TMH publication
- 3. Schaum's Outlines Data Structures Seymour Lipschutz (MGH)

References Books:

- 1. Data Structures and Algorithm Analysis in C, 2 Edition, by Weiss, Pearson Education India.
- 2. Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, by Narasimha Karumanchi, Careermonk Publications

	DKIES Textile and En	gineering Institute, Ichaikaranji		
	A II 203, Digital S	s. Lech. (Semester – III)		
	AIL205: Digital S	systems & wheroprocessors		
Teaching Schem	<u>:</u> C	redits	Evaluation Scheme:	
Lectures: 03 Hrs	/Week	03	SE-I: 25 Marks	
Tutorials: 00 Hrs	./Week		SE-II: 25 Marks	
Practicals: 00 Hr	s./Week		SEE: 50 Marks	
Course Outcome	s:			
On completion o	f the course, student will be able	to-		
	terminology in digital system an	d architecture, instructions and Function	onality of 8085	
Micropr	ocessor.			
Design a	und Simplify Simple Logic Circu	it using Basic gates.		
Design of	of Combination and sequential ci	rcuits.		
□ Design Memory and IO device interfacing with 8085 Microprocessor.				
□ Write assembly language programs using 8085 Instruction set.				
	Сол	irse Contents		
Unit I Fundamental Concepts 06 Hours				
Analog and digi	al systems, Digital and logic ci	rcuits, Basic logic operations and ga	tes- OR, AND, NOT.	
Describing logic circuits algebraically, implementing circuit from Boolean expression. NOR and NAND gates.				
Boolean theorems, De Morgan's theorems, Universality of NAND & NOR gate, Minterm, Maxterm and				
Karnaugh Map.				
Unit II	Binary a	rithmetic	06 Hours	
Binary addition	Binary addition, Signed numbers, Addition and Subtraction in 2's Complement system, overflow,			
multiplication an	d division of binary numbers, B	CD addition, Hexadecimal addition at	nd subtraction, Design	
Full adder and Fu	Full adder and Full sub tractor with state table and timing diagram.			

Flip –flop using NOR and NAND gates, clocked flip flops, clocked S-R, J-K, D and T flip flops, Data storage and transfer, shift register, Counter- Asynchronous counter using Flip-flop, Synchronous counter Design-Johnson and Ring counter

06 Hours

Unit IV	Microprocessor Architecture and Microcomputer System	06 Hours
---------	--	----------

Flip-Flops, Registers and counters

Unit III

Microprocessor Architecture and its operation- Microprocessor initiated operations, internal operation, and Peripheral operation. memory map and addresses, memory and instruction fetch, Input and output devices, logic devices used for interfacing- Tri-State devices, buffer, decode, encoder.

Unit V	8085 Microprocessor Architecture	06 Hours

The 8085 MPU, Microprocessor communication and bus timing, De-multiplexing address and Data bus, Generating control signals, The 8085 Architecture, machine cycles and bus timing, op-code fetch machine cycle, Memory read and write machine cycle, IO read and Write machine cycle, Memory interfacing-memory structure, basic concepts in memory interfacing.

Unit VI	8085 Assembly Language Programming	08 Hours		
The 8085 programming model, instruction Classification, instruction and data format, Writing and execution				
assembly language Program. The 8085 instruction-data transfer operations, addressing modes, Arithmetic				
Operation, Flag concept and cautions, Logic operations, Branch operations, Stack and interrupt.				

- 1. Digital Systems, Principles and Applications-Ronal Tocci, Neal Widmer, Gregory Moss (Pearson Education) 9th Edition.
- 2. Microprocessor Architecture-Programming and applications with 8085-Ramesh Gaonkar (Penram International) 4th Edition.

References Books:

- 1. Modern Digital Electronics R.P.Jain Tata McGraw-Hill Education
- 2. Microprocessors and Microcontrollers N. Senthil Kumar, M. Saravanan, S.

Useful Links:

1. https://www.youtube.com/watch?v=I78iyzXQrP4 (Working of 8085 Microprocessor animation)

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – III) AIL204: Data Communication and Networking

Teaching Scheme:	Credits	Evaluation Scheme:
Lectures: 03 Hrs./Week	03	SE-I: 25Marks
Tutorials: 00 Hrs./Week	05	SE-II: 25Marks
Practicals: 00 Hrs./Week		SEE: 50Marks

Course Outcomes:

On completion of the course, student will be able to-

- \Box Explain the basics of data communication.
- □ Students will be able to explain the responsibilities of different layers.
- □ Students will be able to apply the knowledge of different layer to solve the problems.
- □ Students will be able to analyze the working and functionality of protocols available in different layers.

Course Contents			
Unit I	Communication Fundamentals, Protocols	06 Hours	
	and Models		

Introduction to data communications, data and signals, transmission impairment, Network Representations and Topologies, Common Types of Networks, Internet Connections, Reliable Networks, Rules for communication, protocol requirement in communication, Layered network model: OSI, TCP/IP, Data Encapsulation, Data Access.

Unit II	Physical layer, Ethernet Switching	05 Hours	
Purpose of	the Physical Layer, transmission media: - Guided and Unguided medi	a, Network Hardware	
components,	wireless media, Ethernet, Ethernet Frame		

Unit III	Data link layer	09 Hours
		U/ HOULD

Purpose of the Data Link Layer, Error detection & correction: cyclic codes, hamming code, Data Link Control: - Farming, Flow & error control, Protocol basics, Channel allocation Problem, MAC protocols, ALHOA, CSMA, CSMA/CD, CSMA/CA, Ethernet MAC Address, The MAC Address Table.

Unit IV

Network Layer and addressing

08 Hours

Network Layer Characteristics, IPv4 Address Structure, IPv4 Unicast, Broadcast, and Multicast, Types of IPv4 Addresses, Network Segmentation, Subnet an IPv4 Network, IPv4 Issues, IPv6 Address Representation, IPv6 Address Types, Dynamic Addressing for IPv6 GUAs, ICMP messages and message formats.

Unit VTransport Layer05 HoursTransportation of Data, TCP Overview, UDP Overview, Port Numbers, TCP Communication Process,
Reliability and Flow Control, UDP Communication

Application Layer and Network Security Fundamentals

05 Hours

Application, Presentation, and Session, Peer-to-Peer, NAME SPACE, DOMAIN NAME SPACE, Web and Email Protocols, IP Addressing Services, File Sharing Services,

Security Threats and Vulnerabilities, Network Attacks, Network Attack Mitigation, Device Security

Text Books:

Unit VI

1. Data communication and networking -Behrouz A Forouzan, The McGraw Hill, 4th Edition.

References Books:

1. Computer Networks- A. S. Tenenbaum, PHI, 3rd Edition.

- 2. Data and Computer communications William Stallings, Pearson Education, 8th Edition.
- 3. Data communication and Computer Networks- Ajit Pal, PHI Learning, Eastern Economy Edition.

Useful Links:

1. https://www.netacad.com.

2. https://www.tutorialspoint.com/data_communication_computer_network

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester - III) **AIL205: Theory of Computation**

Teaching Scheme:	Credits	Evaluation Scheme:
Lectures: 03 Hrs./Week	04	SE-I: 25 Marks
Tutorials: 01 Hrs./Week	04	SE-II: 25 Marks
Practicals: 00 Hrs./Week		SEE: 50 Marks

Course Outcomes:

On completion of the course, student will be able to-

- □ Prove statements using Mathematical Induction.
- Describe terminology related to Grammar, Languages, Finite Automata, Pushdown Automata and **Turing Machine**
- Design Regular Expression corresponding to Regular language
- Design Context Free Grammar corresponding to Context Free Language and Regular Language.
- Design Push Down Automata to solve a given problem
- □ Design Turing Machine to solve a given problem

Course Contents

Unit I **Proofs and Regular Languages**

Types of Proofs, Mathematical Induction and Recursive definitions, Regular expressions & Regular languages, Operations on Regular languages.

Unit II Finite Automata

Finite automata definition and representation, union, intersection and complement of Regular Languages and their corresponding FA. Mealy and Moor machines.

Unit III Nondeterminism and Kleen's theorm

Nondeterministic Finite Automata, Nondeterministic Finite Automata with Λ -transitions, Conversion of NFA- Λ to NFA and DFA. Kleen's theorm. Minimization of FA

Unit IV Context Free Languages and Grammar

Examples and definition, Regular Grammar, Derivation and ambiguity, An Unambiguous CFG, Union, concatenation kleen * of CFL, Simplified forms and Normal Forms, Pumping Lemma for context free languages, Intersection and complements of context Free Languages

Unit V **Push Down Automata**

Definition, examples, DPDA, Acceptance of string by PDA, PDA corresponding to CFG, Parsing

Turing Machines Unit VI

Models of computation, definition of Turing Machine as Language acceptors, combining Turing Machines, Computing a function with a TM Variations in Turing Machines: Turing machines with doubly-infinite tapes, more than one tape, Non-deterministic TM and Universal TM.

06 Hours

06 Hours

07 Hours

07 Hours

08 Hours

08 Hours

1. Introduction to Languages & theory of computations—John C. Martin (MGH).

References Books:

- 1. An Introduction to Formal Languages and Automata- Fifth edition, Peter Linz.
- 2. Theory of Computer Science Automata, Languages, and Computation- Third edition

- 1. https://www.javatpoint.com/
- 2. https://www.tutorialspoint.com/

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – III) AIP206: Problem Solving using C				
Teaching Sche	eme:	Credits		Evaluation Scheme:
Lectures: 02 H	Irs./Week	04		CIE: 50 Marks
Tutorials: 00 H	Hrs./Week	04		SEE: 50 Marks
Practicals: 04	Hrs./Week			
Course Outco	omes:			
On completion Expla Desig Build Analy Prepa	n of the course, stude ain terminology in C gn algorithm to solve l a program for devel- yze a C program. are documentation for	nt will be able to– Language the problem. oped algorithm in C Language. r the design		
		Course Contents		
Unit I	Algo	orithm Design and Revision of C		04 Hours
types and Data representation, variables, operators and expressions, program analysis and complexity, Testing and debugging of code. Conditional compilation for debugging Unit II File Handling 04 Hours Types of files, modes of opening files, reading and writing data from file using fgetc, fputc, fprintf and fscanf, random access files using fseek ftell, rewind, fread and fwrite. 04 Hours				
Unit III		Functions and Recursion		04 Hours
Function declaration, definition, and calling, Scope, and lifetime of variables, passing arrays to function, Multifile Compilation, Creating Library of C Functions. Command line arguments and environmental variables. Recursive Functions.				
Unit IV		Bit Wise Operations		04 Hours
Bitwise operators – and, or, not, xor, left shift, right shift.				
Unit V		Preprocessors		04 Hours
Preprocessor, #include - how to make use of a header file, #define - simple and parameterized macros, the #undef directive, predefined preprocessor symbols, macrooperators: # and ##, conditional compilation: the #if and #ifdef directives, avoiding multiple compilations of the same header files				
Unit VI	Unit VI Special keywords in C 04 Hours			
Extern. Volatile, static, enum, typecasting and typedef				

- 1. Problem Solving And Program Design in C, by Jeri R. Hanly, Elliot B. Koffman
- 2. C Programming Language 2nd Edition, Brian W. Kernighan, Dennis Ritchie
- 3. C How to Program 7e, by Deitel

References Books:

- 1. Let Us C, 14 Edition, Yashavant Kanetkar, BPB Publication
- 2. C in Depth, 3rd Edition, S K Srivastava,, BPB Publication

Practical Work:

Student should perform Minimum 16 experiments based on problem analysis and solution design and Data structure. Problems will be from different domains such as data analytics, Mathematics, etc. Comment on the complexity of the algorithm in each experiment. The List of Experiments is as follows:

- 1. Write a C program to implement static list data structure.
- 2. Write a C Program to implement Singly Linked List.
- 3. Write a C Program to implement Doubly Linked List.
- 4. Write a C Program to add two polynomials using Linked List
- 5. Write a C Program to merge two linked lists.

6. Write a C Program to implement Stack and Queue using Array.

- 7. Write a C Program to implement Stack and Queue using Linked List.
- 8. Write a C Program to convert given infix expression into postfix expression.
- 9. Write a C Program to evaluate a postfix expression
- 10. Write a C Program to sort the data stored in an array using QuickSort.
- 11. Write a C Program to sort the data stored in an array using Merge Sort.
- 12. Write a C Program to search the data stored in an array using Binary Search.
- 13. Write a C Program to store and retrieve student data using Hash Table.
- 14. Write a C Program to Store a Binary Search Tree using Linked representation

15. Write a C Program to Find minimum, maximum value from binary search tree and Traverse the Binary search tree.

16. Write a C Program to store a graph using Adjacency Matrix and Print the Graph.

17. Write a C Program to Traverse the Graph using Depth First Traversal and Breadth First Traversal Techniques

18. Write a program to create text file and perform read and write operations on it

19. Write a program to create binary random access file and perform read and write operations on it **Useful Links:**

1. https://nptel.ac.in/courses/106/102/106102064/

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – III) AIP207: Data Communication and Networking Lab

Lab Scheme:	Credits	Evaluation Scheme:
Practicals: 02Hrs/Week	01	CIE: 50 Marks
		SEE: 50 Marks

Course Outcomes:

On completion of the course, student will be able to-

- $\hfill\square$ Describe basic concepts of data communication and networking
- □ Analyze different techniques and protocols used for data communication
- □ Apply the knowledge of techniques for computer communication and will be able to write programs for Computer Communications.

List of Experiments

(It should consist of 10-12 experiments based on the following topics.)

1	Demonstration of different types of Network cables and practically implements the cross-wired
	cable and straight through cable using clamping tool.
2	Demonstration of different networking hardware components.
3	Study of basic network command and Network configuration commands
4	Performing an Initial Switch Configuration using cisco packet tracer.
5	Performing an Initial Router Configuration using cisco packet tracer.
6	Performing TELNET Configuration using cisco packet tracer.
7	Implementation of framing using one of different framing techniques.
8	Implementation of Error Detecting Code (CRC).
9	Implementation of Error Correcting Code (Hamming Code).
10	Write a program to find class if an IP address, Network id, Host id and Default mask
11	Implementation of a program to calculate first, last and total number of addresses in the block from one of the given IP address in the same block.

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – III) AIP208: Digital Systems & Microprocessors Lab

Lab Scheme:		Credits	Evaluation Scheme:	
Practicals: 02 Hrs./Week		01	CIE: 50 Marks	
			SEE: 50 Marks	
Course Outc	comes:	·		
On completion	on of the course, stude	ent will be able to-		
🗆 Desi	gn and Implement Co	ombinational Logic circuits.		
🗆 Desi	gn and Implement Se	quential Logic circuits.		
□ Writ	e assembly language	programs using 8085 Instruction se	et.	
List of Expen	riments			
(It should co	nsist of 10-12 experi	ments based on the following top	pics.)	
1	Verification of	De Morgan's Theorem using gates	i.	
2To realize NAI3To realize Half		ND & NOR Gates are Universal Ga	ites.	
		adder and Full adder		
4 To design and		setup the following circuit using IC	2 7483.	
I) 4-bit bina		ry parallel adder		
	II) 4-bit l	binary parallel Sub-tractor.		
5	Verify Truth ta	ble of Flip Flops		
6	Verify Truth ta	ble of Decade counter		
7	Assembly lang	uage program to move a block of d	ata from source to destination.	
8 Assembly lang		uage program for array addition.		
9	Assembly Lang	guage program to alter the contents	s of flag register in 8085	
10	To Find Numb	er of one's in a given 8 bit number	stored in memory location.	
11	Assembly Lang	guage program to generate RST 7.5	Interrupt.	
12	Assembly Lang	guage program to generate Square	wave on SOD pin.	

DKTES Textile and Engineering Institute, Ichalkaranji						
	Second Year B. Tech. (Semester – III) AIP209-A: Environmental Studies					
Teaching Scl	Teaching Scheme: Credits Evaluation Scheme:					
Lectures: 02	Hrs./Week			SE-I: Marks		
Futorials: 00 Hrs./Week SE-II: Marks						
Practicals: 00 Hrs./Week SEE: Marks						
Course Outcomes:						
On completion of the course, student will be able to-						
□ Understand definition and importance of environment.						
	□ Identify causes and effects of environmental pollution.					
	□ Understand control measure of industrial pollution.					
Understand social issues and local Environmental problems (Group project)						
Course Contents						
Unit I	Na	ture of Environmental Studies		06 Hours		
awareness.						
Unit II Natural Resources and Associated Problems 08 Hours						
Forest resources: Use and over-exploitation, deforestation. Timber extraction, mining, dams and their effects						
on forests a	nd tribal people.					
Mineral reso	ources: Usage and exp	bloitation, environmental effects of	extracting and us	ing mineral resources.		
roou resour	ces: wond tood prob	sem, changes caused by agriculture	effects of modern	n agriculture, lerunzer-		
Energy reso	ources: Growing ene	rgy needs, renewable and non-ren	ewable energy so	ources, use of alternate		
energy sour	energy sources.					
Land resour	Land resources: Land as a resource, land degradation, man induced landslides soil erosion and					
desertification. Role of an individual in conservation of natural resources.						
Water resou	rces: Global distributi	ion, Use and over utilization of sour	rce and ground wa	ater, drought and flood,		
Dam benefi	Dam benefits and problems.					
Unit III		Ecosystems		06 Hours		
Concept of	an ecosystem, Structu	re and function of an ecosystem.	Producers, consur	ners and decomposers.		
Energy flow	v in the ecosystem, E	Ecological succession. Food chair	ns, food webs and	d ecological pyramids.		
Introduction	n, types, characteristi	cs features, structure and function	n of the followin	ng ecosystem - Forest		
ecosystem.	Grassland ecosystem.		·			
Desert ecos	Desert ecosystem. Aquatic ecosystems (Ponds, Lakes). Aquatic ecosystems (Lakes, Rivers).					

Aquatic ecosystems (Streams, Oceans, Estuaries).

1. Environmental studies for Undergraduates publisher Shivaji university Kolhapur

References Books:

- 1. Agarwal, K.C.2001, Environmental Biology, Nidi Pub. Ltd., Bikaner.
- 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380013, India, Email:mapin@icenet.net (R)
- 3. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 4. Clank R.S. Marine Pollution, Clanderson Press Oxford (TB)
- 5. Cunningham, W.P. Cooper, T.H.Gorhani, E. & Hepworth, M.T.2001, Environmental Encyclopedia, Jaico Pub. Mumbai, 1196p
- 6. De A.K., Environmental Chemistry, Wiley Wastern Ltd.
- 7. Down to Earth , Centre for Science and Environment , New Delhi.(R)
- 8. Gleick, H.,1993, Water in crisis, Pacific Institute for studies in Dev., Environment &Security Stockholm Env Institute. Oxford Univ. Press 473p
- 9. Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R)
- 10. Heywood, V.H.& Watson, R.T.1995, Global Biodiversity Assessment, Cmbridge Univ. Press 1140p.
- 11. Jadhav, H.and Bhosale, V.M.1995, Environmental Protection and Laws, Himalaya Pub. House, Delhi 284p.
- 12. Mickinney, M.L. and School. R.M.1196, Environmental Science Systems and Solutions, Web enhanced edition, 639p.
- 13. Miller T.G. Jr., Environmental Science. Wadsworth Publications Co. (TB).
- 14. Odum, E.P.1971, Fundamentals of Ecology, W.B. Saunders Co. USA, 574p.
- 15. RaoM. N. and Datta, A.K.1987, Waste Water Treatment, Oxford & IBH Publ. Co. Pvt. Ltd., 345p
- 16. Sharma B.K., 2001, Environmental Chemistry, Gokel Publ. Hkouse, Meerut
- 17. Survey of the Environment, The Hindu (M)
- 18. Townsend C., Harper, J. and Michael Begon, Essentials of Ecology, Blackwell Science (TB)
- 19. Trivedi R.K. Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, vol. I and II, Environmental Media (R)
- 20. Trivedi R.K. and P.K. Goel, Introduction to air pollution, Techno-Science Publications (TB)
- 21. Wagner K.D., 1998, Environmental management, W.B. Saunders Co. Philadelphia, USA 499p.
- 22. Paryavaranshastra Gholap T.N.
- 23. ParyavaranSahastra Gharapure

Useful Links:

1. https://nptel.ac.in/courses/120/108/120108004/

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – IV) AIL210: Advanced Microprocessors and Microcontroller					
Teaching Sc	heme:	Credits		Evaluation Scheme:	
Lectures: 03	Hrs./Week	04		SE-I: 25 Marks	
Tutorials: 01	Tutorials: 01Hrs./Week 04 SE-II: 25 Marks				
practical: 00 Hrs./Week SEE: 50 Marks					
Course Out	comes:		·		
 On completion of the course, student will be able to- Explain architecture of microcontroller and its advantages over microprocessor. Write and execute Arduino programs using C language. Interface microcontroller with different peripherals. Describe advanced processors architecture. 					
		Course Contents			
Unit I		Introduction		06 Hours	
Unit II Architecture : ATmega328 Microcontroller 06 Hours Introduction to ATmega328P Microcontroller, Features of ATmega328P Microcontroller, architecture of ATmega328P Microcontroller, pinout configuration and pin description, comparison of ATmega328 with ATmega2560 microcontroller.					
Unit III		Programming		06 Hours	
Learning Arduino code basics: Arduino C- Arduino Program Structure, variables, Using Mathematical Operators, using Arduino String Functionality, Repeating a Sequence of Statements					
Unit IV		Interfacing		06 Hours	
Interfacing digital inputs and outputs, Connecting and Using LED, interfacing 7-segment display, Interfacing keypad, Measuring Distance using IR sensor, Detecting Light using LDR					
Unit V	Inter	rrupt ,timer and Communication		06 Hours	
Arduino inte Measuring T Communica	Onit vInterrupt ,uner and Communication06 HoursArduino interrupts – interrupt example , Internal Timer of Arduino, Detecting Light , ADC interfacing - Measuring Temperature, Arduino – Communication, Serial Communications-Introduction, Types of Serial Communications, Sending and Receiving Serial Data from/to Arduino.				

Unit VI	Architecture of 8086 and 80286	06 Hours
	Microprocessor	

Introduction to 8086 microprocessor, comparison of 8085 with 8086 microprocessor, architecture of 8086 Microprocessor, Physical memory organization of 8086 Salient features of 80286 microprocessor, architecture of 80286 microprocessor Real Mode of 80286 memory addressing Protected Mode of 80286 memory addressing.

Text Books:

- 1. Arduino Cookbook -Michael Margolis, Oreilly
- 2. Advanced Microprocessors and Peripherals, K. M. Bhurchandi and A.K.Ray Tata Mcgraw Hill.

References Books:

- 1. Arduino for Beginners Essential Skills Every Maker Needs John Baichtal- Pearson Education, Inc
- 2. Arduino Development Cookbook Cornel Amariei PACKT Publishing

- 1. <u>https://freevideolectures.com/course/4638/nptel-introduction-internet-things/22,23,24,25</u>
- 2. <u>https://www.tutorialspoint.com/arduino/arduino_board_description.htm</u>
- 3. https://microcontrollerslab.com/use-arduino-interrupts-examples/

DKTES Textile and Engineering Institute, Ichalkaranji					
	Second Year B. Tech. (Semester – IV) AIL211: Introduction to Artificial Intelligence				
Teaching Scheme: Credits Evaluation Scheme:					
Lectures: 03	Lectures: 03 Hrs./Week 03 SE-I: 25 Marks				
Futorials: 00Hrs./Week SE-II: 25 Marks					
Practicals: 0	Practicals: 00 Hrs./Week SEE: 50 Marks				
Course Out	comes:				
On completi	on of the course, stude	ent will be able to-			
🗆 Exp	□ Explain basic terms of artificial intelligence				
\Box Des	cribe different searchi	ng mechanism in solution space			
🗆 Des	cribe constrain satisfa	ction problem.			
		Course Contents			
Unit I	B	asics of Artificial Intelligence		06 Hours	
Artificial Intelligence, The foundation of Artificial Intelligence, History of Artificial Intelligence, The state of Art					
Unit II		Intelligent Agents		08 Hours	
Agents and environments, Good behavior: The concept of rationality, The nature of environments, The structure of agents					
Unit III	S	olving Problems by Searching		06 Hours	
Problem-solving agents, Example problems, Searching for solutions, Uninformed search strategy, Informed					
search strate	gy, Heuristic Function	15			
Unit IV		Beyond Classical Search		06 Hours	
Local search	algorithms and optim	nization problems, Local search in	continuous space	e, Searching with non-	
deterministic	e approach, Searching	with partial observations, Online se	earch agents and u	nknown environments.	
Unit V		Adversarial Search		08 Hours	
Games, Opt Partially ob	imal decisions in gan servable games, Alter	nes, Alpha-beta pruning, Imperfec native approaches	et real life decision	ons, Stochastic games,	

	U	ni	t V	VI	
--	---	----	-----	----	--

Constraint Satisfaction Problems

04 Hours

Defining constraint satisfaction problems, Constraint propagation, Backtracking search for CSPs, Local search for CSPs, The structure of problem.

Text Books:

1. Artificial Intelligence: A modern approach by S. Russell, P. Norvig

References Books:

1. Introduction to Artificial Intelligence by Flasinski M., Springer

Useful Links:

1. https://mrcet.com/downloads/digital_notes/IT/(R17A1204)%20Artificial%20Intelligence.pdf

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – IV) **AIL212: Advanced Computer Networks** Teaching Scheme: **Evaluation Scheme:** Credits Lectures: 03 Hrs./Week SE-I: 25 Marks 03 Tutorials: 00 Hrs./Week SE-II: 25 Marks Practical: 00 Hrs./Week SEE: 50 Marks **Course Outcomes:** On completion of the course, student will be able to-□ Explain the basic concepts of Computer networks. □ Explain the responsibilities of different layers. □ Apply the knowledge of different layer to solve the problems. □ Analyze the working and functionality of protocols available in different layers. **Course Contents 07 Hours** Unit I **Internet Protocol, Routing concepts and Protocols** IPv6 addressing, IPv6 Packet format, Transition from IPv4 to IPv6, ARP and RARP, ICMP and IGMP Routing concepts: Path Determination, Packet Forwarding, IP Routing Table, Static and Dynamic Routing **06 Hours VLAN and Inter-VLAN Routing** Overview of VLANs, VLANs in a Multi-Switched Environment, VLAN Configuration, VLAN Trunks Dynamic Trunking Protocol, Inter-VLAN Routing Operation, Router-on-a-Stick Inter-VLAN Routing, Inter-VLAN Routing using Layer 3 Switches, Troubleshoot Inter-VLAN Routing. Unit II **07 Hours Transport Layer** The Transport service primitives UDP: Process to Process communication, User Datagram Format, Operation and uses of UDP. TCP: TCP Services and Features, TCP segment format, TCP Connections, Flow and error control in TCP, TCP Timers. Client Server Concept, Berkeley Sockets: Socket Addresses, Elementary Socket system calls byte ordering and address conversion routines, connectionless iterative server, Connection Oriented concurrent server. **Unit III DHCP. DNS 06 Hours** DHCP: Introduction, Previous Protocols, DHCP operation, Packet Format. DNS: Need, Name Space, Domain Name Space, Distribution of name space, and DNS in internet, Resolution, DNS massages, Types of records, Compression examples, encapsulation. Unit V **FTP, TFTP and HTTP 06 Hours** FTP: Connections, Communication, Command processing, File Transfer Anonymous FTP, TFTP. HTTP: Architecture, Web Documents, HTTP Transaction, Request & Response messages: header & examples, Persistent vs. non persistent HTTP, Proxy Servers. WLAN and FHRP **05 Hours** Introduction to Wireless, Components of WLANs, WLAN Operation, CAPWAP Operation, Channel Management, WLAN Threats, Secure WLANs

FHRP: - First Hop Redundancy Protocols, HSRP

1. TCP/IP Protocol Suite-Behrouz Forouzan. McGraw Hill, 4thEdition.

References Books:

1. Internetworking with TCP/IP: principles, protocols, and architectures Volume one - Douglas E. Comer, Prentice Hall, 4thEdition.

- 1. https://www.netacad.com.
- 2. https://www.javatpoint.com/
- 3. <u>https://www.tutorialspoint.com/</u>

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – IV) AIL213: Computer Algorithms						
Teaching Sc	Teaching Scheme: Credits Evaluation Scheme:					
Lectures: 03	Hrs./Week	03		SE-I: 25 Marks		
Tutorials: 00	Hrs./Week			SE-II: 25 Marks		
Practicals: 0	Practicals: 00 Hrs./Week SEE: 50 Marks					
Course Out	comes:		1			
 On completion of the course, student will be able to— Describe fundamentals of algorithms. Discover solution to problems using algorithm design paradigms like Divide and Conquer and Greedy Approach. Apply Dynamic Programming and Backtracking Approach to tackle the problems. 						
🗆 Ana	lyze performance of a	lgorithms using asymptotic analysi	s.			
		Course Contents				
Unit I]	Fundamentals of Algorithms		06 Hours		
Unit II Divide and Conquer 06 Hours General method, Binary Search, Ternary Search, Finding the Maximum and Minimum, Merge Sort, Quick Sort, Selection, Convex Hull. 000 Hours						
Unit III		The Greedy Method		07 Hours		
General method, Knapsack Problem, Job Sequencing with Deadlines, Minimum-Cost Spanning Trees – Prim's and Kruskal's Algorithms, Optimal Storage on Tapes, Optimal Merge Patterns, Huffman codes, Single Source Shortest Paths.						
Unit IV		Dynamic Programming		08 Hours		
General method, Multistage Graphs, All Pairs Shortest Paths, Optimal Binary Search Trees, 0/1 Knapsack, Reliability Design, Traveling Salesperson Problem, Flow shop scheduling.						
Unit V		Backtracking		06 Hours		
General method, N-Queens Problem, Permutation Tree, Sum of Subsets, Graph Coloring, Hamiltonian Cycle, Knapsack Problem.						
Unit VI		NP Hard and NP Complete		06 Hours		
Basic Conce Scheduling p	Unit VINP Hard and NP Complete06 HoursBasic Concepts, P, NP, NP Complete, NP Hard, Cook's Theorem, NP Hard Graph problems, NP HardScheduling problems, NP Hard Code Generation Problems.					

- 1. Fundamentals of Computer Algorithms- Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, (2nd Edition), Universities Press.
- 2. Introduction to Algorithms-Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein (3rd Edition), The MIT Press.

References Books:

- 1. The Design and Analysis of Computer Algorithms- A. Aho, J. Hopcroft and J. Ullman, (1st Edition) Addison-Wesley.
- 2. Introduction to The Design and Analysis of Algorithms-Anany Levitin, (3rd Edition), Pearson.

- 1. <u>http://personal.kent.edu/~rmuhamma/Algorithms/algorithm.html</u>
- 2. https://www.ics.uci.edu/~goodrich/teach/cs260P/notes/

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – IV) AIL214: Software Engineering						
Teaching Sc	Teaching Scheme:CreditsEvaluation Scheme:					
Lectures: 03	Hrs./Week	04		SE-I: 25 Marks		
Futorials: 01 Hrs./Week SE-II: 25 Marks						
Practicals: 0	Practicals: 00 Hrs./Week SEE: 50 Marks					
Course Out	Course Outcomes:					
 On completion of the course, student will be able to- Explain different software engineering processes. Describe various concepts of software engineering problem domain. Describe basics concepts of software engineering solution domain. Apply the software engineering principles to the give problem 						
Course Contents						
Unit I	Intro	duction to Software Engineering	[08 Hours		
Generic Process Model, Defining The Framework Activities, Identifying Task Set, Process Patterns, Process Assessment and Improvements, Prescriptive Process Model, Specialized Process Models, Unified Process, Personal and Team Process Model						
Unit II Requirements Engineering 07 Hours						
Requirements Engineering, Establishing The Groupwork, Eliciting Requirements, Developing Use Cases, Building The Analysis Model, Negotiating Requirements, Requirements Monitoring, Validating Requirements. Requirement Analysis, Scenario Based Modelling, UML Models That Supplements Use Cases, Class Based Methods, Identifying Analysis Classes, Specifying Attributes, Defining Operations, Class Responsibility Collaboration Modeling, Association and Dependencies, Analysis packages, State Representations, Pattern for Requirement Modeling						
Unit III		Design Concept		06 Hours		
Design Within the Context of Software Engineering, The Design Process, Design Concepts, The Design Model.						
Unit IV		Architectural Design		06 Hours		
Software Architecture, Architectural Genres, Architectural Styles, Architectural Consideration, Architectural Design, Assessing Alternative Architectural Design, Pattern Based Architectural Review, Architectural Conformance Checking, Agility And Architecture.						
Unit V	Softwar	re Component and Interface Desi	gn	06 Hours		
Components, Designing Class-Based Components, Conducting Component-Level Design, Component-Based Development, The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps						

Unit VI

Software Testing

A Strategic Approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Test Strategies for Object-Oriented Software, Validation Testing, System Testing, The Art of Debugging, Internal and External Views of Testing, White-Box Testing, Basis Path Testing, Control Structure Testing, Black-Box Testing

Text Books:

 Roger S.Pressman, Software engineering- A practitioner's Approach, McGraw-Hill International Edition, (8th edition)

References Books:

- 1. Ian Sommerville, Software Engineering, Pearson Higher Education (10th Edition) 2016
- Pankaj Jalote, An Integrated Approach to Software Engineering, Springer New York, (2nd Edition)
- G. Booch, J. Rambaugh, and I. Jacobson, The Unified Modeling Language User Guide, Addison Wesley, (2nd Edition)

- 1. https://cse.iitkgp.ac.in/~dsamanta/courses/se/index.html
- 2. https://nptel.ac.in/courses/106/105/106105087/

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – IV) AIP215: Object Oriented Programming using C++ **Teaching Scheme: Evaluation Scheme:** Credits Lectures: 02 Hrs./Week 04 CIE: 50 Marks Practicals: 04 Hrs./Week SEE: 50 Marks **Course Outcomes:** On completion of the course, student will be able to-□ Describe terminology of Object Oriented Programming using C++ \Box Develop programs employing features of C++. \Box Design object oriented solutions using C++ \Box Analyze programs written in C++ **Course Contents** Unit I Introduction **08 Hours** C++ Program Structure, variables, operators, control structure – if, if- else, switch, looping while, do-while, for, C++ keywords. Input/output – I/O streams and standard I/O devices, cin and associated functions, cout

and formatted output.

User Defined function- declaration, definition & calling function, function call stack and activation records, storage classes, scope rules, function -default arguments. Reference and reference arguments to the function. Pointer variables, new and delete operator, dynamic arrays

Unit II	Object Oriented Programming - Class and	07 Hours
	Object	

Object Oriented fundamentals, Class and object- concept and need, Class declaration, Class members- member variables and functions, access specifiers, UML notations for class, implementation of member functions. Object Declaration, Accessing class members, class scope, accessor and mutator functions, order of public and private members of the class.

Constructors, invoking a constructor, constructors and default parameters, array of objects and constructor, destructor.

this pointer, static members, constant objects and member function, Data abstraction, structure and class, information hiding

Unit III	Inheritance and Composition	06 Hours			
Inheritance – concept, implementation, base classes and derived classes, members in base classes and derived					
classes, overriding base class members, UML notations for inheritance, constructors of derived and base					
classes, destructor in derived class, Inheritance as public, protected and private					
Composition (Aggregation) and association – concept, implementation and UML Notation					
Unit IV Polymorphism 06 Hours					
Polymorphism - need, concept, implementation using function overloading, Multiple Inheritance, function					
overriding, v	irtual function, pure virtual function, abstract classes, Friend function and fr	iend classes, accessing			

overriding, virtual function, pure virtual function, abstract classes, Friend function and friend classes, accessing base class functions from derived class objects, accessing derived class functions from base classobjects. Operator overloading: -fundamentals of operator overloading, overloading binary operators, overloading unary operator

Unit V	V Exceptions Handling and File Processing	06 Hours				
Excepti	on handling: Introduction, Handling exceptions within program, C++ me	chanism of exception				
handlin	handling, throwing an exception, order of catch blocks, creating exception classes, rethrowing exceptions,					
excepti	on handling techniques, Standard Library Exception Hierarchy.					
File Pro	ocessing : Introduction, Files and streams, creating and opening a file, file openin	ig modes, Reading data				
from fi	le, updating file, Random access file – creating and opening a random access f	ile, reading andwriting				
to a ran	dom access file, object serialization.					
Unit V	VI Template and Standard Template Library	06 Hours				
	(STL)					
Templa	te: Introduction, function template, class template,	1				
STL-I	ntroduction, STL containers, Common member functions in STL container, cont	ainer headers, typedefs,				
iterator	s, iterator operations, STL Algorithms.					
Text B	ooks:					
1.	C++ Programming: From Problem Analysis To Program Design, (5th Edition), -	- D.S. MALIK,				
	Cengage Learning.					
2.	C++ How To Program (8 th Edition) by Paul deitel, Harvey deitel, Pearson Publ	ication				
Refere	nces Books:					
1.	Object Oriented Programming in C++ (4 th Edition) - Robert Lafore, SAMS Pul	blication				
2.	Effective C++ 55 Specific Ways to Improve Your Programs and Designs, (3 rd	Edition) - Scott				
	Meyers, Addison Wesley Publication.					
3.	The C++ Programming Language,(3rd edition) - Bjarne Stroustrup, Pearson Ed	ucation India				
	Publication.					
Practic	al Work: Students have to carry out minimum 14 to 16 Practical based on featu	res of C++, Object				
Oriente	d Design and data structure.					
Sample	e List of Experiments					
1.	Write a program to implement complex numbers and provide basic arithmetic of	operations for them				
	using structure (basic c++ program and class)	_				
2.	Write a program to implement Matrix class and provide basic arithmetic operat	ions for them (basic				
	c++ program and class)					
3.	Write a program to implement BMI calculator. (Class and Object)					
4.	Write a program to calculate mode for a given set of number. Numbers can be i numbers and double precision numbers (function overloading)	ntegers, floating point				
5.	Write a program to overload the basic arithmetic operators for the class comple	x numbers, also				
	modify the show method to include I/O manipulators (Operator overloading)					
6.	Write a program to overload insertion and extraction operators for the complex function (friend function)	class using friend				
7.	Write a program to implement hierarchy given in the figure. (simple inheritance	e)				
8.	Write a program to implement linear search using template function. Input can	be a set of integers, a				
	set of double precision numbers, and a set of strings (Function template)					
9.	Write a program to implement the given hierarchy (Multiple inheritance)					
10.	Write a program to implement the has-a-relationship between given entities. (co	omposition)				
11.	Write a program to implement a class mySet as a template class and implement	the following set				
	operation union, intersection, difference and symmetric difference (Class temp	late)				
12.	Write a program to read a C++ program and check for error, if any in the parer	nthesis.				
13	The program should report the line numbers where error found (file handling)					
11.	Write a program to implement object serialization (File handling)					
12. 13.	Write a program to read a C++ program and check for error, if any in the parer The program should report the line numbers where error found (file handling).	ithesis.				
14.	Write a program to implement object serialization. (File handling)					

- 15. Study of various containers available in Standard Template Library (STL)
- 16. Write a program to demonstrate various features of list container in STL

- 1. C++ API Documentation : <u>https://devdocs.io/cpp/</u>
- 2. C++ API Reference : <u>https://en.cppreference.com/w/</u>

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – IV) AIP216: Advanced Computer Networks Lab

Lab Scheme:	Credits	Evaluation Scheme:
Practicals: 02 Hrs./Week	01	CIE: 50 Marks
		SEE: 50 Marks

Course Outcomes:

On completion of the course, student will be able to-

- □ Design client server-based application
- □ Do analysis of network protocols
- □ Configure different protocols and be able to implement programs using socket for communication.

List of Experiments

(It should consist of 10-12 experiments based on the following topics.)

1	Implementation of connection oriented (TCP) client-server socket program.
2	Implementation of connectionless (UDP) client-server socket program
3	Implementation of the Address Resolution Protocol using socket programming
4	Implementation of forward lookup method using Socket Programming
5	Implementation of Reverse lookup method using Socket Programming
6	Configuration of VLAN using CISCO Packet Tracer
7	Configuration of WLAN using CISCO Packet Tracer
8	Configuration of DHCP using CISCO Packet Tracer
9	Configuration of OSPF using CISCO Packet Tracer
10	Configuration of RIP using CISCO Packet Tracer
11	Configuration of DNS server on Linux and Windows

DKTES Textile and Engineering Institute , Ichalkaranji Second Year B. Tech. (Semester – IV) AIP217: Computer Algorithms Lab

Lab Scheme:	Credits	Evaluation Scheme:
Practicals: 02 Hrs./Week	01	CIE: 50 Marks
		SEE: 50 Marks

Course Outcomes:

On completion of the course, student will be able to-

- □ Describe fundamentals of algorithms.
- Discover solution to problems using algorithm design paradigms like Divide and Conquer and Greedy Approach.
- □ Apply Dynamic Programming and Backtracking Approach to tackle the problems.

List of Experiments

(It should consist of 10-12 experiments based on the following topics.)

1	Demonstrate use of profiler.
2	Write a program to search an element in the list using Binary Search Approach and Compute its analysis.
3	Write a program to sort elements using Bubble Sort, Insertion Sort, Selection Sort Techniques.
4	Write efficient algorithm to find repeated element in an array.
5	Write efficient algorithm to find minimum and maximum of given numbers.
6	Write a program to sort elements using Merge Sort Technique and Compute its complexity.
7	Write a program to sort elements using Quick Sort Technique and Compute its complexity.
8	Write program to find Optimal Merge Pattern for elements.
9	Write a program to find Minimum Cost Spanning Tree using Prim's algorithm.
10	Write a program to find Minimum Cost Spanning Tree using Kruskal's algorithm.
11	Write program to find Single Source Shortest Path.
12	Write a program to encode elements using Huffman Code.
13	Write a program to find solution to Knapsack Problem Instance.
14	Write a program to find solution to Job Sequencing with Deadlines Problem Instance.
15	Write a program to find solution to Multistage Graph Problem Instance.
16	Write a program to find All Pairs Shortest Path.
17	Write a program to find Optimal Binary Search Tree.
18	Write a program to find solution to Reliability Design Problem Instance.
19	Write a program to find solution to 0 / 1 Knapsack Problem Instance.
20	Write a program to find solution to N-Queens Problem.
21	Write a program to find solution to Sum of Subsets Problem.

DKTES Textile and Engineering Institute, Ichalkaranji Second Year B. Tech. (Semester – IV) AIL209: Environmental Studies			
Teaching Scheme:	Credits	Evaluation Scheme:	
Lectures: 02 Hrs./Week		CIE: 30 Marks	
Tutorials: 00 Hrs./Week		SEE: 70 Marks	
Practicals: 00 Hrs./Week		SEE. 70 Hurks	
Course Outcomes:			
On completion of the course, student	t will be able to-		
Understand definition and in	mportance of environment.		
□ Identify causes and effects of	of environmental pollution.		

- □ Understand control measure of industrial pollution.
- □ Understand social issues and local environmental problems (Group project)

Course Contents

Unit IBiodiversity and its Conservation06 Hours

Introduction - Definition: genetic, species and ecosystem diversity, Bio-geographical classification of India. Value of biodiversity: Consumptive use, productive use, social, ethical, aesthetic and option values. India as a mega-diversity nation. Western Ghats as a bio-diversity region.

Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, mad wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Unit II	Environmental Pollution		08 Hours	S
Definition:	Causes, effects and control measures of Air pollution.	Water pollution.	Soil pollution,	Marin

pollution. Noise pollution. Thermal pollution & Nuclear hazards.

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.

Unit III	Social Issues and Environmental protec	tion 06 Hours

Disaster Management: Floods, earthquake, cyclone and landslides. Tsunami. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people; its problems and concerns. Environmental Ethics: Issue and possible solutions. Global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation. Consumerism and waste products. Environment Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act.

1. Environmental studies for Undergraduates publisher Shivaji university Kolhapur

References Books:

- 1. Agarwal, K.C.2001, Environmental Biology, Nidi Pub. Ltd., Bikaner.
- 2. BharuchaErach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380013, India, Email:mapin@icenet.net (R)
- 3. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 4. Clank R.S. Marine Pollution, Clanderson Press Oxford (TB)
- 5. Cunningham, W.P. Cooper, T.H.Gorhani, E. & Hepworth, M.T.2001, Environmental Encyclopedia, Jaico Pub. Mumbai, 1196p
- 6. De A.K., Environmental Chemistry, Wiley Wastern Ltd.
- 7. Down to Earth, Centre for Science and Environment, New Delhi. (R)
- 8. Gleick, H.,1993, Water in crisis, Pacific Institute for studies in Dev., Environment &Security.StockholmEnv.Institute. Oxford Univ. Press 473p
- 9. Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R)
- 10. Heywood, V.H.& Watson, R.T.1995, Global Biodiversity Assessment, Cmbridge Univ. Press 1140p.
- 11. Jadhav, H.and Bhosale, V.M.1995, Environmental Protection and Laws, Himalaya Pub. House, Delhi 284p.
- 12. Mickinney, M.L. and School. R.M.1196, Environmental Science Systems and Solutions, Web enhanced edition, 639p.
- 13. Miller T.G. Jr., Environmental Science. Wadsworth Publications Co. (TB).
- 14. Odum, E.P.1971, Fundamentals of Ecology, W.B. Saunders Co. USA, 574p.
- 15. RaoM. N. and Datta, A.K.1987, Waste Water Treatment, Oxford & IBH Publ. Co. Pvt. Ltd., 345p
- 16. Sharma B.K., 2001, Environmental Chemistry, Gokel Publ. Hkouse, Meerut
- 17. Survey of the Environment, The Hindu (M)
- 18. Townsend C., Harper, J. and Michael Begon, Essentials of Ecology, Blackwell Science (TB)
- 19. Trivedi R.K. Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, vol. I and II, Environmental Media (R)
- 20. Trivedi R.K. and P.K. Goel, Introduction to air pollution, Techno-Science Publications (TB)
- 21. Wagner K.D., 1998, Environmental management, W.B. Saunders Co. Philadelphia, USA 499p.
- 22. Paryavaranshastra Gholap T.N.
- 23. ParyavaranSahastra Gharapure

Useful Links:

1. https://nptel.ac.in/courses/120/108/120108004/